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Abstract This paper aims to solve a class of CEC benchmark constrained optimiza-
tion problems that have been widely studied by nature-inspired optimization algo-
rithms. Based on canonical duality theory, these challenging problems can be refor-
mulated as a unified canonical dual problem over a convex set, which can be solved
deterministically to obtain global optimal solutions in polynomial time. Applications
are illustrated by some well-known CEC benchmark problems, and comparisons with
other methods have demonstrated the effectiveness of the proposed approach.

Keywords Global optimization · Constrained optimization ·
Canonical duality theory · CEC benchmark

1 Introduction

Nature-inspired optimization algorithms, such as genetic algorithm (GA), evolution
strategy (ES), particle swarm optimization (PSO), differential evolution (DE) and state
transition algorithm (STA) [26,27], have received considerable attention in recent
decades due to their strong adaptability and easy implementation. Strictly speaking,
these algorithms are unconstrained optimization procedures, and therefore it is neces-
sary to find techniques to deal with constraints when solving constrained optimization
problems. The most common approach to handling constraints is the penalty function
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method. The idea of this method is to transform a constrained optimization problem
into an unconstrained one by adding a certain term to the objective function based on
the amount of constraint violation. Then, some special representations and operators
can be designed to preserve the feasibility of solutions at all times or to repair a solution
when it is infeasible. Multiobjective optimization techniques are also used to manage
constraints. The main idea is to rewrite the single objective optimization problem as a
multiobjective optimization problem in which the constraints in the original problem
are treated as additional objectives [6,19].

On the other hand, regarding some constrained optimizations with special struc-
tures, for instance, the nonconvex quadratically constrained quadratic programs
(QCQP), deterministic global optimization techniques are prevalent. By successive lin-
earization within a branching tree using reformulation-linearization techniques (RLT)
to estimate all quadratic terms, a branch and cut algorithm for nonconvex QCQP was
proposed in [2]. A simplicial branch-and-bound algorithm for QCQP was given in
[16], in which, branching is done by partitioning the feasible region into the Cartesian
product of two-dimensional triangles and rectangles. Based on the brand-and-bound
scheme, through piecewise-linear and edge-concave relaxations, a deterministic global
optimization approach was proposed for solving mixed-integer QCQP [20]. Semidef-
inite and conic relaxations for QCQP are also ubiquitous in recent years, please see
[1,3,18] and references therein.

It is known that the traditional Lagrange multiplier method can be used mainly
for solving convex optimization problems. If either the objective function or its fea-
sible set is nonconvex, the well-developed Lagrangian duality produces a duality gap
in global optimization [4,5,11]. In order to bridge the gap inherent in the classical
Lagrange duality theory, a canonical duality theory has been developed during the
last decades. This potentially powerful theory was originated in the late 1980s by
Gao and Strang [9] from nonconvex mechanics. The kernels of the theory consist
of a canonical dual transformation methodology, a complementary-dual principle,
and a triality theory. The main merit is that by using this theory, a large class of
nonconvex/nonsmoonth/discrete optimization/variational problems in totally differ-
ent fields can be transformed as a unified canonical dual problem without duality
gap, which is a concave maximization over a convex domain. Under certain condi-
tions, a canonical dual problem can be solved easily, by many well-developed algo-
rithms and softwares [12]. However, if there exists no critical point in the canonical
dual feasible space, we cannot get the corresponding global solution to the primal
problem. In this case, certain linear and nonlinear perturbation methods have been
developed to recover the global optimal solutions [8,14,21,22,25]. In [10], the stan-
dard quadratic programming (QP) problem with quadratic objective function and
linear constraints was studied by the canonical duality. In this paper, we study the
quadratic optimization problem with quadratic and box constraints and focus on solv-
ing a class of Congress on Evolutionary Computation (CEC) benchmark constrained
optimization problems that have been widely studied by nature-inspired algorithms.
By integrating the canonical dual solution with the KKT conditions, we are able to
obtain approximate or global solutions easily, and experimental results have testi-
fied the effectiveness of the proposed approach when compared with other meth-
ods.

123



Global solutions to a class of CEC benchmark 459

2 The canonical duality theory

In this paper, we focus on the following quadratic optimization problemwith quadratic
and box constraints (primal problem):

(P) : min
{
P(x) = 1

2
xT Ax − aT x : x ∈ R

n
}
,

s.t. g(x) = {g j (x)} =
{
1

2
xT B jx − bTj x − b j

}
≤ 0, j = 1, · · · ,m,

ci ≤ xi ≤ di , i = 1, · · · , n, (1)

where, x = (x1, · · · , xn), A = AT , Bj = BT
j ∈ R

n×n are symmetric matrices,
a, b j ∈ R

n are given vectors, b j , ci , di are constant.
Let Ei ∈ R

n×n , ei ∈ R
n be a diagonal matrix and a unit vector, with all

zeros except a one in the position (i, i) and (i), respectively. Let denote Bk =
2Ek , bk = (ck + dk)ek , bk = ckdk , k = m + 1, · · · ,m + n, then con-
straints in (P) can be uniformly rewritten as the so-called geometrical opera-
tor

ξ = �(x) =
{
1

2
xT Bkx − bTk x − bk

}
: Rn → Ea ⊂ R

m+n, (2)

where Ea = {ξ ∈ R
m+n| ξ ≤ 0 ∈ R

m+n}. Therefore, by introducing an indicator
function

V (ξ) =
{

0 if ξ ∈ Ea
+∞ otherwise

(3)

where ξ = (ξ1, · · · , ξm+n), and let U (x) = −P(x) = − 1
2x

T Ax + aT x, the
primal problem (P) can be written into the following unconstrained canonical
form:

min{�(x) = V (�(x)) −U (x) : x ∈ R
n}. (4)

By the Fenchel transformation, the conjugate function V �(ς) of V (ξ) can be defined
by

V �(ς) = sup
ξ

{ξ T ς − V (ξ)} =
{

0 if ς ∈ Sa

+∞ otherwise
(5)

where Sa = {ς ∈ R
m+n|ς ≥ 0}. By convex analysis, we have the following canonical

duality relations

ς ∈ ∂V (ξ) ⇔ ξ ∈ ∂V �(ς) ⇔ V (ξ) + V �(ς) = ξ T ς ,

which are equivalent to the following KKT conditions:

ξ ∈ Ea, ς ∈ Sa, ξ ⊥ ς .
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Let replace V (�(x)) by�T (x)ς −V �(ς). The so-called total complementary function
Ξ : Rn × Sa → R associated with �(x) can be defined as

Ξ(x, ς) = �T (x)ς − V �(ς) −U (x)

= 1

2
xT G(ς)x − xT F(ς) − ςT d, (6)

where d = (b1, · · · , bm+n)
T , ς = (ς1, · · · , ςm+n) ∈ Sa , and

G(ς) = A +
m+n∑
k=1

ςk Bk, F(ς) = a +
m+n∑
k=1

ςkbk .

By the fact that Ξ(x, ς) is a quadratic function of x, the criticality condition
∇xΞ(x, ς) = 0 leads to a linear equation G(ς)x = F(ς). Therefore, solving this
equation to eliminate x in Ξ(x, ς), the canonical dual function can be formulated
as

Pd(ς) = −1

2
FT (ς)G−1(ς)F(ς) − ςT d. (7)

Finally, the canonical dual problem can be described as follows:

(Pd) : max{Pd(ς)| ς ∈ S+
a } (8)

where the canonical dual feasible space is defined by

S+
a = {ς ∈ Sa | G(ς) � 0}.

Theorem 1 The problem (Pd) is canonically dual to (P) in the sense that if (x̄, ς̄)

is a KKT point of Ξ(x, ς), then x̄ is a KKT point of (P), ς̄ is a KKT point of (Pd),
and

P(x̄) = Ξ(x̄, ς̄) = Pd(ς̄).

Moreover, if ς̄ ∈ S+
a , then x̄ = G−1(ς̄)F(ς̄) is the global minimizer

of (P).

Proof By introducing Lagrange multiplier ξ ∈ Ea associated with ς ≥ 0, the
Lagrangian L(ξ , ς) is given by

L(ξ , ς) = −1

2
FT (ς)G−1(ς)F(ς) − ςT d − ξ T ς . (9)

It is easy to prove that the criticality conditions ∇ς L(ξ , ς) = 0 lead to

ξ =
⎛
⎝

ξ1
· · ·

ξm+n

⎞
⎠ =

⎛
⎝

1
2 x̄

T B1x̄ − bT1 x̄ − b1
· · ·

1
2 x̄

T Bm+n x̄ − bTm+n x̄ − bm+n

⎞
⎠ (10)
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and the accompanying KKT conditions include

0 ≤ ς̄k ⊥ 1

2
x̄T Bk x̄ − bTk x̄ − bk ≤ 0, k = 1, . . . ,m + n. (11)

Therefore, x̄ is a KKT point of (P). Furthermore, since ς̄ ≥ 0 for any �(x) ≤ 0, we
have

P(x) ≥ P(x) + ς̄T�(x)

= 1

2
xT Ax − aT x +

m+n∑
k=1

(
1

2
xT ς̄k Bkx − ς̄kbTk x − ς̄kbk

)

= 1

2
xT G(ς̄)x − xT F(ς̄) − ς̄T d

= Ξ(x, ς̄). (12)

Noting that P(x̄) = Ξ(x̄, ς̄),∇xΞ(x̄, ς̄) = 0 and Ξ(x, ς̄) is a quadratic function
with respect to x, we have

P(x) − P(x̄) ≥ Ξ(x, ς̄) − Ξ(x̄, ς̄)

= (x − x̄)∇xΞ(x̄, ς̄) + 1

2
(x − x̄)T∇xxΞ(x̄, ς̄)(x − x̄)

= 1

2
(x − x̄)T G(ς̄)(x − x̄). (13)

If G(ς̄) � 0, it is easy to find that x̄ is the global minimizer of (P), where, x̄ is a
solution of the canonical equilibrium equation

G(ς̄)x̄ = F(ς̄). (14)

3 Implementation techniques

By Theorem 1 we know that the canonical dual problem (Pd) is a concave maxi-
mization over a convex set, which can be solved by well-developed nonlinear opti-
mization techniques. In the section, we show that (Pd) can be relaxed to a semi-
definite programming (SDP) problem. Therefore, the popular software can be used
to solve some benchmark problems. First, we rewrite (Pd) into the following relaxed
form:

min g + ςT d

s.t. g ≥ 1

2
FT (ς)G−1(ς)F(ς) (15)

G(ς) � 0 (16)

ς ≥ 0 (17)
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where g is actually the pure gap function in the canonical duality theory (see [13]).
Using the Schur complement [7], we can get the equivalent positive (semi) definite
condition to (15) and (16)

(
G(ς) F(ς)

FT (ς) 2g

)
� 0 (18)

and then the optimization problem can be expressed as the standard SDP form

min g + ςT d

s.t.

(
G(ς) F(ς)

FT (ς) 2g

)
� 0 (19)

ς ≥ 0 (20)

If G(ς̄) � 0, we can get the corresponding global solution to (P) by the canonical
duality theory. In practice, the estimation ofG(ς̄)may exist little inaccuracy due to the
perturbed complementary slackness in primal-dual interior point method and numer-
ical precision. In this study, we use the Cholesky factorization, condition number and
the smallest eigenvalue of G(ς̄) to evaluate the positive definiteness comprehensively.
If G(ς̄) is ill conditioned or det(G(ς̄)) = 0, we can add a linear perturbation to the
primal objective function and then integrate the canonical dual solutions with the KKT
conditions to recover the approximate or global solution to primal problem. Details
of the techniques are given in the following examples.

4 Numerical results

Most of the benchmark constrained optimization problems are from [15], and we keep
the number of each problem. In the experiments, we use SeDuMi [23] (a software
package which can solve SDP problems) to obtain the canonical dual solution. The
built-in functions fsolve and fminunc in MATLAB optimization toolbox are also used
to solve the simple nonlinear equations and unconstrained optimization problems.

Example 1 g01

min f (x) = 5
4∑

i=1

xi − 5
4∑

i=1

x2i −
13∑
i=5

xi

s.t. g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0
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g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1(i = 1, · · · , 9), 0 ≤ xi ≤ 100(i = 10, 11, 12) and
0 ≤ x13 ≤ 1.

Solving the canonical dual problem, we can obtain ς̄ =
⎛
⎜⎜⎝

ς1 ς2 ς3 ς4 ς5 ς6 ς7 ς8 ς9 ς10 ς11
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 5.0000 5.0000

ς12 ς13 ς14 ς15 ς16 ς17 ς18 ς19 ς20 ς21 ς22
5.0000 7.0001 2.0001 3.0001 2.0001 3.0001 2.0001 −0.0000 −0.0000 −0.0000 1.0001

⎞
⎟⎟⎠

In this case, G(ς̄) is positive seme-definite but singular, satisfying the global opti-
mality condition. By the KKT conditions, we can find that g7, g8, g9, bounds of
x1, · · · , x9, and x13 are active, so we can first get

(
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
1 1 1 1 1 1 1 1 1 − − − 1

)

where, “−′′ means undetermined. Considering that constraints g7, g8, g9 are active,
solving the corresponding linear equations, we can easily get x10 = 3, x11 = 3, x12 =
3. Finally, the global solution to g01 is x∗ =

(
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
1 1 1 1 1 1 1 1 1 3 3 3 1

)

and f (x∗) = −15.

Example 2 g04

min f (x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141

s.t. g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407 − 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23 − 110 ≤ 0

g4(x) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x23 + 90 ≤ 0

g5(x) = 9.30096 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(x) = −9.30096 − 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45 and 27 ≤ xi ≤ 45(i = 3, 4, 5).

Solving the canonical dual problem, we can obtain ς̄ =
(

ς1 ς2 ς3 ς4 ς5 ς6 ς7 ς8 ς9 ς10 ς11
336.8388 0.0000 0.0001 0.0002 0.0003 798.2826 2.0310 6.1233 0.0001 1.6054 1.1849

)

In this case, G(ς̄) � 0 and cond(G(ς̄)) = 9.7330e5, satisfying the global opti-
mality condition, so we can get x̄ =

(
x1 x2 x3 x4 x5

77.9452 33.0179 29.7345 44.9884 38.2523

)
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464 X. Zhou et al.

Noting that the condition number is large, according to the KKT conditions, we can
first get

(
x1 x2 x3 x4 x5
78 33 − 45 −

)
.

Considering that constraints g1, g6 are active, solving the corresponding linear equa-
tions, we can easily get x3 = 29.995256025681599, x5 = 36.775812905788207.
Finally, the global solution to g04 is x∗ =

(
x1 x2 x3 x4 x5
78 33 29.995256025681599 45 36.775812905788207

)

and f (x∗) = −3.0666e4.

Remark 1 We adopt the inverse of G(ς̄) because only its smallest eigenvalue approx-
imates to zero although its condition number is large. As a matter of fact, the solution
x̄ causes only little infeasibility of the first constraint. By integrating the canonical
dual solutions with the KKT conditions, we see that x1, x2 and x4 are determined in
the first stage.

Example 3 g07

min f (x) = x21 + x22 + x1x2 − 14x1−16x2+(x3 − 10)2+4(x4 − 5)2+(x5 − 3)2

+ 2(x6 − 1)2 + 5x27 + 7(x8 − 11)2+2(x9 − 10)2+(x10 − 7)2+45

s.t. g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x23 − 7x4 − 120 ≤ 0

g5(x) = 5x21 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x21 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x25 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10(i = 1, · · · , 10).

Solving the canonical dual problem, we can obtain ς̄ =
⎛
⎜⎜⎝

ς1 ς2 ς3 ς4 ς5 ς6 ς7 ς8 ς9
1.7168 0.4746 1.3760 0.0205 0.3120 0.2871 0.0000 0.0000 0.0000

ς10 ς11 ς12 ς13 ς14 ς15 ς16 ς17 ς18
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

⎞
⎟⎟⎠
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In this case, G(ς̄) � 0 and cond(G(ς̄)) = 7.0000, satisfying the global optimality
condition, so we can get x∗ =
(

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
2.1721 2.3636 8.7746 5.0959 0.9903 1.4307 1.3218 9.8286 8.2800 8.3760

)

and f (x∗) = 24.3111. Note that there exists little infeasibility due to numerical
precision.

Example 4 g10

min f (x) = x1 + x2 + x3
s.t. g1(x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01(x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000(i = 2, 3) and 10 ≤ xi ≤ 1000(i =
4, · · · , 8)

Solving the canonical dual problem, we can obtain ς̄ =
⎛
⎜⎜⎝

ς1 ς2 ς3 ς4 ς5 ς6 ς7
9.2834 28.9205 5.8893 0.0001 0.0001 0.0001 0.0001

ς8 ς9 ς10 ς11 ς12 ς13 ς14
0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

⎞
⎟⎟⎠

In this case, G(ς̄) � 0 and cond(G(ς̄)) = 749.4514, satisfying the global opti-
mality condition. However, the max(eig(G(ς̄))) = 2.5743e−4, which is too small, so
we cannot use the inverse of G(ς̄) directly. By the KKT condition, we can find that
constraints g1, g2, g3 are active, and all of the box constraints are inactive. That is to
say, the problem is equivalent to a linear programming problemwith linear constraints,
which indicates that g4, g5, g6 must be active. Fixing x4, x5, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 83333.333 − 833.33252x4
x4 − 300

x2 = 1250x4 − 1250x5
x5 − 400

x3 = 12500 − 25x5
x6 = 400 − x4
x7 = 400 + x4 − x5
x8 = 100 + x5
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As a result, we can reduce the problem to

min f (x) = 83333.333 − 833.33252x4
x4 − 300

+ 1250x4 − 1250x5
x5 − 400

+ 12500 − 25x5

Taking the box constraints of x1, · · · , x8 into consideration, when using (100, 200) as
an initial point for the unconstrained optimization problemwith two variables, it is easy
to get the uniqueminimum x4 = 182.0176995811199 and x5 = 295.6011732779338.
Utilizing the equations obtained by the complementary slackness, finally, we have
x1 = 579.3066844253549, x2 = 1359.970668051655, x3 = 5109.970668051655,
x6 = 217.9823004188801, x7 = 286.4165263031861, x8 = 395.6011732779338
and f (x∗) = 7049.248020528666.

Remark 2 We don’t use the inverse of G(ς̄) directly because all of its eigenvalues
are approximately zeros. And the reason why we still use the canonical dual solutions
as useful heuristics is that the G(ς̄) is slightly positive definite due to the perturbed
complementary slackness caused by the SeDuMi. Since all of the box constraints are
inactive and the target function is linear, it is not difficult to see that all of the constraints
must be active. Note that the constraints of x4 and x5 are changed when solving the
unconstrained optimization problem since box constraints of x1, x2, x3 and x6, x7, x8
must be satisfied.

Example 5 g18

min f (x) = −0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7)

s.t. g1(x) = x23 + x24 − 1 ≤ 0

g2(x) = x29 − 1 ≤ 0

g3(x) = x25 + x26 − 1 ≤ 0

g4(x) = x21 + (x2 − x9)
2 − 1 ≤ 0

g5(x) = (x1 − x5)
2 + (x2 − x6)

2 − 1 ≤ 0

g6(x) = (x1 − x7)
2 + (x2 − x8)

2 − 1 ≤ 0

g7(x) = (x3 − x5)
2 + (x4 − x6)

2 − 1 ≤ 0

g8(x) = (x3 − x7)
2 + (x4 − x8)

2 − 1 ≤ 0

g9(x) = x27 + (x8 − x9)
2 − 1 ≤ 0

g10(x) = x2x3 − x1x4 ≤ 0

g11(x) = −x3x9 ≤ 0

g12(x) = x5x9 ≤ 0

g13(x) = x6x7 − x5x8 ≤ 0

where −10 ≤ x1 ≤ 10, (i = 1, · · · , 8) and 0 ≤ x9 ≤ 20.
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Solving the canonical dual problem, we can obtain ς̄ =
⎛
⎜⎜⎝

ς1 ς2 ς3 ς4 ς5 ς6 ς7 ς8 ς9 ς10 ς11
0.1444 0.0000 0.1444 0.1445 0.0000 0.1442 0.1441 0.0000 0.1445 0.0000 0.0000
ς12 ς13 ς14 ς15 ς16 ς17 ς18 ς19 ς20 ς21 ς22

0.0000 0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000

⎞
⎟⎟⎠

In this case, G(ς̄) � 0 and cond(G(ς̄)) = 7.1887e7, satisfying the global opti-
mality condition. However, the condition number is large. Taking the KKT condi-
tions into account, we can see that constraints g1, g3, g4, g6, g7, g9 are active since
the corresponding ς1, ς3, ς4, ς6, ς7, ς9 are not zeros. But it becomes still diffi-
cult to solve the nonlinear equations. Considering that several eigenvalues of G(ς̄)

are zeros and there exists no linear term in the objective function, and in this situa-
tion, we add a small linear perturbation term 0.05(x1 + · · · , x9) to the primal objec-
tive function. Solving the perturbed canonical dual problem, we get G(ς̄) � 0 and
cond(G(ς̄)) = 1.4592e3 and the smallest eigenvalue of G(ς̄) is 0.0021. Therefore,
we can get x̄ =

(
x1 x2 x3 x4 x5 x6 x7 x8 x9

−0.9660 −0.2585 −0.2587 −0.9660 −0.9661 −0.2588 −0.2589 −0.9657 0.0005

)

and f (x̄) = −0.8663. Note that there exists little infeasibility due to numerical
precision.

Remark 3 The solution we get is quite different from the best known solution. The
linear perturbation technique can help to find one of the approximate solutions. As a
matter of fact, the following solutions x̄ =
(

x1 x2 x3 x4 x5 x6 x7 x8 x9
0.0450 −0.0387 0.8663 −0.4999 0.0004 −1.0001 0.8878 0.5000 0.9604

)
,

(
x1 x2 x3 x4 x5 x6 x7 x8 x9

0.0689 −0.9972 0.9088 −0.4179 0.0920 −0.9959 0.8986 −0.4388 0.0009

)
,

and
(

x1 x2 x3 x4 x5 x6 x7 x8 x9
0.6888 −0.7257 0.9693 0.2454 0.6973 −0.7173 0.9726 0.2332 −0.0006

)

can all be considered as approximate solutions, which are obtained by the proposed
techniques.

Example 6

min f (x) = −1

2

n∑
i=1

x2i +
n∑

i=1

xi

s.t. g(x) =
n∑

i=1

x2i −
n∑

i=1

xi ≤ 0

where −1 ≤ xi ≤ 1, (i = 1, · · · , n).
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Table 1 Comparable running
time (s)

n YALMIP Proposed method

2 1.0937 0.3080

5 1.3306 0.3131

10 1.6286 0.3234

20 2.4788 0.3392

50 6.2334 0.4749

100 16.1496 0.6542

200 43.1086 2.9885

300 85.8071 8.4530

400 164.9477 10.8982

500 243.2736 16.8634

0 100 200 300 400 500
0

50

100

150

200

250

size

tim
e(
s)

YALMIP
CDA

Fig. 1 Illustration of running time for YALMIP and CDA, respectively

When using the proposed techniques to solve the problem, we can get the canonical
dual solution ς∗ = (1, 0, · · · , 0︸ ︷︷ ︸

n

) and the corresponding global optimal solution x∗ =

(0, · · · , 0︸ ︷︷ ︸
n

) to the primal problem. Under the same environment, the same problem is

solved via a branch and bound method embedded in YALMIP [17]. The running time
for two methods is given in Table 1 and Fig. 1, and we can find that the canonical dual
algorithm (CDA) consumes much less time.

Example 7 Considering the following special nonconvex QCQP problem

min P(x) = 1

2
xT Ax − aT x

s.t. x2i = 1, i = 1, · · · , n
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case 1:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 5 7 9 6 4 1 1 3 1 5 3
2 0 4 6 9 6 5 2 3 4 3 5 4
5 4 0 2 7 4 4 5 6 8 6 3 5
7 6 2 0 5 3 4 6 7 10 7 2 5
9 9 7 5 0 3 5 8 9 11 9 4 6
6 6 4 3 3 0 2 5 6 8 6 1 3
4 5 4 4 5 2 0 3 4 7 4 2 1
1 2 5 6 8 5 3 0 1 4 1 4 2
1 3 6 7 9 6 4 1 0 2 0 6 3
3 4 8 10 11 8 7 4 2 0 3 8 5
1 3 6 7 9 6 4 1 0 3 0 5 3
5 5 3 2 4 1 2 4 6 8 5 0 3
3 4 5 5 6 3 1 2 3 5 3 3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4
−4
−2
−3
−6
−2
−2
−3
−5
−7
−5
−2
−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By solving the corresponding SDP problem in 0.323206 s, we got ς̄ = (29.0003,
21.0000, 16.9996, 29.0000, 30.9997, 24.9999, 8.9996, 23.0001, 33.0005, 38.0007,
31.0004, 21.9998, 5.9996), and then x̄ = G−1(ς̄)F(ς̄) = (−1, −1, 1, 1, 1, 1, 1, −1,
−1,−1,−1, 1,−1). The same problemwas solved by the BARONglobal optimization
package [24] via the MATLAB/BARON Interface Version: v1.57. while the total time
elapsed is 0.37 s. We can find that the proposed approach is comparable to BARON
for this case.

case 2:
The A and a are given in the next page. By solving the corresponding SDP problem

in 0.445124 s, we got ς̄ = 1.0e3(1.4337, 1.4377, 0.9288, 1.0418, 1.1448, 0.8929,
0.7829, 0.5839, 0.4999, 0.1261, 0.7631, 0.8151, 1.5443, 1.9394, 2.0274, 1.7933,
1.5722, 1.8804, 1.7274, 1.3933, 1.1102, 1.0551, 1.0851, 0.3251, 0.0842, 0.1171,
0.2331, 0.3131, 0.1692, 0.3809, 0.6019, 0.6488, 0.6388, 0.9558, 1.1188, 1.2357,
1.3648, 1.4567, 1.4767, 1.3828, 1.4767) and then x̄ = G−1(ς̄)F(ς̄) = (1, 1, 1, 1,
1, 1, 1, 1, 1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,−1, −1, −1, −1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1). By using BARON, the same problem
is consuming 16.72 s in total. We can find that in this case, the proposed approach is
much superior.
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A
=

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
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5 Conclusion

Canonical duality theory was applied to solve a class of CEC benchmark constrained
optimization problems. Experimental results showed that some of them can be solved
directly, some of them can be solved by integrating the canonical dual solutions with
the KKT conditions, and others can be solved approximately by adding a small linear
perturbation term. Additional special examples demonstrated the superiority of the
proposed approach.
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